駅舎等建物におけるシーリング材の劣化度評価に関する研究 その2 画像認識 AI による劣化度の推定

駅	シーリング材	劣化度
画像認識 AI	セグメンテーション	

1.はじめに

前報では、シーリング劣化における表面状態から損傷 深さの推定方法について報告した。画像認識 AI 技術を用 いてクラック量(Q)、幅(W)を求めることで損傷深さ(D)を 推定し、画像から客観的かつ簡易に QWD 値を予測するこ とが期待される。本報では、画像認識 AI 技術による検証 結果を報告する。

2.検証項目の設定

画像から図1のような壁面シーリング材の劣化状態を定 量的に判定するために必要な検証項目を検討した。

劣化状態の評価値は QWD 値とした¹⁾。 QWD 値はクラ ックの量(Q)、幅(W)、損傷深さ(D)を表し防水上の結果を 加味したシーリング劣化状態の評価尺度である。また画 像認識 AI は画像中の特定の物体を検出するための AI モデ ルである。よって画像認識 AI を用いて画像からシーリン グ、クラック、剥離を検出できれば QWD 値を推定できる と考える。検証項目を表1に示すように、設定した。

表1 検証	項目
-------	----

検証項目	仮説	
画像認識 AI	画像から劣化対象を検出できる	
QWD 值推定	劣化対象から QWD 値を推定できる	

2-1.画像認識 AI

画像認識 AI を用いて画像からシーリング、クラック、 剥離を検出する。なお本研究では、画像認識 AI の内、セ グメンテーションを採用した。セグメンテーションは画 像内の対象を識別し、ピクセル単位で分類する領域抽出 である。また画像認識 AI は事前学習により特定の物体に 特化したモデルを実装可能である。モデル開発は、図2に 示すような教師データの作成、モデル学習、モデル評価 の3工程によって行われる。

Study on Deterioration Assessment of Sealants in Buildings such as Stations Part 2 Estimation of Degradation Level Using Image Recognition AI

正会員	〇古谷	勇人*1	同	青山	浩之*1
同	青山	瑠衣*2	同	池田	佳樹* ³

図2 物体検出 AI の開発工程

図2に示すように AI モデル開発において教師データの 作成が全ての基礎となるため、集計データの整理および 画像中への正確な正解付けに注意した。また教師データ の作成の都合上、クラックはシーリング材上でのみ、剥 離はシーリング材の周辺でのみ発生するとした。

2-2.QWD 値

画像認識 AI で抽出されたシーリング、クラック、剥離の領域から QWD 値を求める。

クラックの量(Q)に対する従来の評価は亀裂のスケール 図を参考に目視で判定している²⁾。よって、亀裂のスケー ル図におけるクラックの面積比率を評価値とすることで 定量的な判断が可能だと仮定する。面積比率は式(1)によ り求めることができる。

なお隙間なく充填された状態を健全なシーリング面積 とした。そのため健全なシーリング面積は画像認識 AI に よるシーリング面積と剥離面積の合計である。

幅(W)は、クラックの内接円から推定する。画像認識 AI によって抽出されたクラックに内接円を描画する。クラ ックの幅は内接円の直径で示される。そこで最大内接円 の直径を最大横幅長とすることで画像中から幅推定可能 である。しかし推定された幅はピクセル単位である。よ ってピクセル単位から画像における長さの単位である実 測単位(mm)に換算する必要がある。画像中のスケールま たはシーリングの横幅長から換算係数(mm/ピクセル)を求 めることができる。この換算係数から実測単位に換算す ることで幅の推定が可能である。

損傷深さ(D)は、幅から推定する。前報より損傷深さ(D) と幅(W)は相関係数 0.70 と強い相関関係にあることが確認 された。よって、幅(W)と損傷深さ(D)の1次線形回帰式を 求めることで、幅(W)から損傷深さ(D)が推定できる。 以上により求めた Q 値、W 値、D 値を乗ずることで QWD 値が算出できる。

3. 検証結果

3-1.画像認識 AI

教師データに97枚の画像データを使用しAIモデルを開 発した。AIモデルによる画像認識結果を図3および図4に 示す。

図3 壁面のシーリング検出結果

図3に示すように元画像(左図)から、シーリング材が 赤領域で検出できた。(右図)

検査者の正解結果と検出結果の例を図4に示す。図4にお いて青領域はシーリング材、緑領域はクラックをそれぞ れ示す。

図4 正解結果(左)検出結果(右)

正解結果(左図)と検出結果(右図)の一致率は84% であった。

以上のことから、画像認識 AI によりシーリング、クラ ック、剥離の領域が検出できたと考える。

3-2.QWD 値

画像認識 AI で検出されたシーリング、クラック、剥離 の領域からQWD 値を推定した。推定結果の例を図5に示 す。また図5における検査者の判定結果および画像認識AI の推定結果を表2に示す。またQ値、W値、D値のそれ ぞれについて検査者と画像認識 AI の結果をバブルチャー トにて表した。バブルチャートを図6に示す。

*'環境リサーチ

*²JR 東日本ビルテック

** 東日本旅客鉄道 博士(工学)

図5 画像認識 AI による QWD 値の推定結果

表2 検査者と画像認識 AI の比較

項目	検査者	画像認識 AI
Q值	5	5
₩値	4	4
D 値	4	4
QWD 値	80	80

図6 検査者と画像認識 AI のバブルチャート

表 2 に示すとおり検査者と画像認識 AI の結果は一致し ていた。図6に示すとおり画像認識 AI による予測結果は、 検査者に比べて安全サイド側に推定しやすい傾向が見ら れた。

4.まとめ

本研究では、画像認識 AI を用いて客観的かつ簡易にシ ーリング材の劣化度を推定する方法を検討した。その結 果、画像認識 AI によりシーリング、クラック、剥離の領 域が検出でき、またその検出結果から QWD 値の推定が可 能であると示唆された。Q値については人による判断差の 少ない客観的な評価が可能であると考える。

しかし画像認識 AI の精度や OWD 値の決定方法には改 善の余地がある。今後も検討を続け、シーリング材の劣 化度推定ソリューションの開発を目指したい。

【参考文献】

1) 伊藤彰彦、榎本教良、清水祐介、松村宇、高根由充、竹本喜昭、清水市郎、田 中亨二:QSD 値による建築用シーリング材の劣化状態の評価、日本建築学会大会学術 講演梗概集,p943-944.2012

2) JIS A 1439: 2022 建築用シーリング材の試験方法

- *1 Kankyo research Institute Inc.
- *² JR East Facility Management Company
- *³East Japan Railway Company, Dr.Eng